Impact factors to regulate mass transfer characteristics of stable alginate membrane performed superior sensitivity on various organic chemicals
نویسنده
چکیده
Calcium alginate membrane has great potential for membrane separation technology. The polymer frameworks of the membrane were successfully regulated by the mass fraction of homopolymeric blocks of -L-guluronic acid (FGG) in the entire molecular chain of alginate and the additive CaCl2 as a cross-linker. The mechanical strength can be controlled by regulated the FGG and CaCl2 concentration. Selected mass transfer of saccharides (Glucose,G, 180 Da; Maltose,M, 324 Da; Raffinose,R, 504 Da) was achieved. The mass transfer flux of saccharides was strongly changed and inversely proportional to the 4.4 power of molecular volume. The mass transfer flux of saccharides was inversely proportional to the 2 power of FGG at prepared 1 M CaCl2. The mass transfer flux of urea (60 Da) was clearly decreased with increasing CaCl2 concentration. Especially, in higher FGG range, effect of CaCl2 concentration remarkably appeared on its effective diffusion coefficient (Deff). The volumetric water fraction with calcium concentration was very slight, regardless of FGG. The tortuosity increased linearly with increasing additive CaCl2 concentration. In higher CaCl2 concentration, the effect of FGG on the tortuosity remarkably appeared. Obtained empirical equation was anticipated as a guideline to estimate the effective diffusion coefficient of the alginate membrane. High permeability was performed by low FGG (0.18) membrane performed high permeability than high FGG (0.56) membrane. The water permeation mechanism was obeyed by Hagen-Poiseuille flow regardless of FGG. © 2012 Published by Elsevier Ltd. Selection under responsibility of the Congress Scientific Committee (Petr Kluson)
منابع مشابه
Addition of Fillers to Sodium Alginate Solution Improves Stability and Immobilization Capacity of the Resulting Calcium Alginate Beads
Background: Although advantages of immobilization of cells through entrapment in calcium alginate gel beads have already been demonstrated, nevertheless, instability of the beads and the mass transfer limitations remain as the major challenges.Objective: The objective of the present study was to increase the stability, porosity (reduce mass transfer limit...
متن کاملEvaluation of various characteristics of Plastalgin alginate according to International ISO Standards and ADA specifications
Evaluation of various characteristics of Plastalgin alginate according to International ISO Standards and ADA specifications Dr. A. Monzavi* - Dr. GH. Omati Shabestari** - Dr. S. Shahabi*** - Dr. F. Hajloo**** *- Associate Professor of Removable Prosthodontics Dept. - Faculty of Dentistry – Tehran University of Medical Sciences. **- Assistant Professor of Removable Prosthodontics Dept. Faculty ...
متن کاملMechanistic Modeling of Organic Compounds Separation from Water via Polymeric Membranes
A mathematical model considering mass and momentum transfer was developed for simulation of ethanol dewatering via pervaporation process. The process involves removal of water from a water/ethanol liquid mixture using a dense polymeric membrane. The model domain was divided into two compartments including feed and membrane. For a description of water transport in ...
متن کاملبررسی عملکرد تبادل گرهای غشایی الیاف توخالی در علوم پزشکی نوین و داروسازی
Hollow fiber membrane contactors have been applied in various industries e.g. chemistry, petroleum, biotechnology and medicine. They are also widely used in artificial organs e.g. artificial lung, kidney and liver as well as some pharmaceutical procedures such as separation and purification of biological materials. Intrinsic properties of hollow fiber membranes, such as high packing density and...
متن کاملCoupling transport and biodegradation of VOCs in surface and subsurface soils.
Volatile organic chemicals present at Superfund sites preferentially partition into the soil gas and may be available for microbial degradation. A simple mass transfer model for biodegradation for volatile substrates has been developed for the aerobic decomposition of aromatic and aliphatic hydrocarbons. The mass transfer analysis calculates diffusive fluxes from soil gas through water and memb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015